Class Width Calculator - Calculate Frequency Distribution Class Width

Calculate optimal class width for frequency distributions using data range, number of classes, and Sturges' Rule for histogram construction

Updated: November 2025 • Free Tool

Enter Data Range & Classes

Results

Class Width
0.00
Range 0.00
Rounded Width 0
Sturges' Classes 0
Lower Boundary 0.00
Upper Boundary 0.00

Class Intervals

What is a Class Width Calculator?

A Class Width Calculator determines the optimal width for class intervals in frequency distributions and histograms based on your data range and desired number of classes.

This calculator is used for:

  • Histogram Construction - Create appropriate class intervals
  • Frequency Distribution - Organize data into meaningful groups
  • Data Analysis - Determine optimal data grouping
  • Statistical Reporting - Present data in clear intervals

To create visual representations with your calculated class widths, explore our Histogram Calculator to display frequency distributions with properly sized bins.

To organize your data into frequency tables, check out our Frequency Distribution Calculator to see how values are distributed across intervals.

To create connected line graphs from your frequency data, visit our Frequency Polygon Calculator to visualize data distribution trends.

To analyze the five-number summary of your data, use our Box Plot Calculator to understand quartiles and identify outliers.

How Class Width Works

Class width is calculated using these formulas:

Range = Max - Min
Class Width = Range / Number of Classes
Sturges' Rule: k = 1 + 3.322 × log₁₀(n)

Round up to a convenient number to ensure all data is covered.

Key Concepts Explained

Class Interval

A range of values grouped together in frequency distribution. All intervals should have equal width for consistency.

Sturges' Rule

A formula to estimate optimal number of classes based on sample size. Works well for normally distributed data.

Rounding

Class width is typically rounded up to convenient numbers (5, 10, 20, etc.) for easier interpretation.

How to Use This Calculator

1

Enter Data Range

Input minimum and maximum values from your dataset

2

Set Number of Classes

Choose desired number of intervals (5-20 typical)

3

Review Class Intervals

Get class width and see all interval boundaries

Benefits of This Calculator

  • Instant Results - Get class width immediately
  • Sturges' Rule - Automatic optimal class suggestion
  • Complete Intervals - See all class boundaries
  • Rounded Values - Convenient class widths
  • Educational Tool - Learn about frequency distributions
  • Professional Analysis - Create proper histograms

Factors Affecting Results

  • Data Range - Larger range requires wider classes or more classes
  • Number of Classes - More classes give finer detail, fewer show patterns
  • Sample Size - Larger samples support more classes
  • Data Distribution - Skewed data may need adjusted classes
  • Purpose - Exploratory vs. presentation affects choice
  • Context - Domain knowledge guides class width selection
Class Width Calculator - Free tool to calculate optimal class intervals for frequency distributions
Professional class width calculator for determining optimal class intervals in frequency distributions and histograms.

Frequently Asked Questions

What is class width in statistics?

Class width is the difference between the upper and lower boundaries of a class interval in a frequency distribution. It represents the size or range of each class and remains constant across all classes.

How do you calculate class width?

Class width is calculated as: (Maximum value - Minimum value) / Number of classes. Round up to a convenient number to ensure all data fits within the classes.

How many classes should a frequency distribution have?

Typically, use between 5 and 20 classes. Sturges' Rule suggests k = 1 + 3.322 × log₁₀(n), where n is the sample size. More data allows for more classes.

What is Sturges' Rule?

Sturges' Rule is a formula to determine the optimal number of classes: k = 1 + 3.322 × log₁₀(n), where k is the number of classes and n is the sample size.

Why is class width important?

Class width determines how data is grouped in frequency distributions and histograms. Appropriate class width reveals patterns while avoiding over-simplification or excessive detail.

Should class width be rounded?

Yes, class width should typically be rounded up to a convenient number (like multiples of 5, 10, or powers of 10) for easier interpretation and to ensure all data points fit within the classes.